管道节流阀的工作原理(节流阀和溢流阀的区别)

管道节流阀的工作原理(节流阀和溢流阀的区别)

大家好,管道节流阀的工作原理相信很多的网友都不是很明白,包括节流阀和溢流阀的区别也是一样,不过没有关系,接下来就来为大家分享关于管道节流阀的工作原理和节流阀和溢流阀的区别的一些知识点,大家可以关注收藏,免得下次来找不到哦,下面我们开始吧!

节流阀的工作原理。请详细解之。

节流阀的工作原理,依靠阀杆夹紧柔韧的橡胶管而产生节流作用,也可以利用气体压力来代替阀杆压缩胶管。柔性节流阀结构简单,压力降小,动作可靠性高。对污染不敏感,通常工作压力范围为0.3—0.63MPa。

应用气动流量控制阀对气动执行元件进行调速,比用液压流量控制阀调速要困难、因气体具有压缩性。所以用气动流量控制阀调速应注重以下几点,以防产生爬行:

(2)气缸、活塞间的润滑状态要好;

(3)流量控制阀应尽量安装在气缸或气马达四周;

(4)尽可能采用出口节流调速方式;

(5)外加负载应当稳定。若外负载变化较大,应借助液压或机械装置(如气液联动)来补偿由于载荷变动造成的速度变化。

节流阀按通道方式可分为直通式和角式两种;按启闭件的形状分,有针形、沟形和窗形三种。

可调节节流阀:阀针和阀芯采用硬质合金制造,产品按API6A标准设计,具有耐磨、耐冲刷性能。主要用于井口采油(气)树设备,

滑套式节流阀:阀芯采用低噪音平衡型结构,开启轻便,产品按API6A标准设计,阀芯表面覆盖碳化钨,适合于有闪蒸、高压差,高压力,空化等条件苛刻的场合,使用寿命长,流量调节精度大大提高。适用于石油,天然气,化工,炼油,水电等行业。

节流阀和单向节流阀当节流口调整好并锁紧后,有时会出现流量不稳定现象,特别在最小稳定流量时更易发生。

引起流量不稳定的主要原因是锁紧装置松动,节流口部分堵塞,油温升高,以及负载压力发生变化等。

节流口调好并锁紧后,由于机械振动或其它原因会使锁紧装置松动,使节流口过流面积改变,从而引起流量变化。

油液中杂质堆积和粘附在节流口边上,使过流面积减小,引起流量减少。当压力油将杂质冲掉后,使节流口又恢复至原有过流面积,流量也恢复至原来的数值,因此引起流量不稳定。

当流经节流阀的油液温度发生变化时,会使油液的粘度发生变化,也会引起流量不稳定;当负载变化时,压力随之变化,会使节流阀的前后油液压差发生变化,同样也会引起流量不稳

防止流量不稳定的措施,除采用防止节流阀堵塞的方法外,还可以采取加强油温控制,拧紧锁紧装置和尽可能使负载压力不发生变化,或少发生变化等措施。

节流阀或单向流阀的节流口关闭时,采用间隙密封配合处必定有泄漏量,故节流阀或单向节流阀不能作为截止阀使用。当密封面磨损过大后,会引起泄漏量增加,有时亦会影响最小稳定流量,此时应更换阀芯。

节流阀工作原理 工作原理是什么

1、节流阀的内部核心部件,也就是阀杆阀芯组合成节流阀的启闭件,其芯头大多为圆锥流线型,通过它改变管道截面积的大小,来达到调节管道流量和压力的作用。目前启闭件的结构形式比较多,用处不同,其结构形式也有不同。

2、节流阀是还可以通过改变节流的长度来控制流体流量的阀门。如果将节流阀和单向阀并联则可组合成单向节流阀;将其与双向阀组合起来就是双向节流阀;节流阀和溢流阀的配合也可组成节流调速系统。总之不同场合选用不同形式的组合。

3、比如节流阀在以上三种阀的组合中,应用在定量泵液压系统中的系统调速时,即为进油路节流、回油路节流和旁路节流三种调速系统。因节流阀没有流量负反馈功能,不会因负载变化所造成的速度不稳定,所以它多数用在负载变化不大,或者对速度稳定性要求不高的场合。

4、节流阀在起到控制流体流量的作用时,一般来说是在节流阀两端(管道前后)的压差一定时,其开口的大小影响着液体流量的变化。简单来说节流阀起到的主要作用是截流调速的作用、负载阻力的作用和压力缓冲的作用。

5、其中当流体经过节流阀流入时,节流阀就能对流体起到压力缓冲的作用,节流阀会在一定程度上阻碍流体的运行而减少其流体的冲击力。节流阀会在压力降极大的情况下起降低介质压力的作用。各种口径不同,其内部结构性也有不同,用处也各不相同。但基本原理是相同的。

节流阀的工作原理是什么

当气体或液体在管道内流过一个缩孔或一个阀门时,流动受到阻碍,流体在阀门处产生漩涡、碰撞、摩擦。流体要流过阀门,必须克服这些阻力,表现在阀门后的压力P2比阀门前的压力P1低得多。这种由于流动遇到局部阻力而造成压力有较大降落的过程,通常称为“节流过程”。实际上,当流体在管路及设备中流动时,也存在流动阻力而使压力有所降低。但是,它的压力降低相对较小,并且是逐渐变化的。而节流阀的节流过程压降较大,并是突然变化的。在节流过程中,流体既未对外输出功,又可看成是与外界没有热量交换的绝热过程,根据能量守恒定律,节流前后的流体内部的总能量(焓)应保持不变。但是,组成焓的三部分能量:分子运动的动能、分子相互作用的位能、流动能的每一部分是可能变化的。节流后压力降低,质量比容积增大,分子之间的距离增加,分子相互作用的位能增大。而流动能一般变化不大,所以,只能靠减小分子运动的动能来转换成位能。分子的运动速度减慢,体现在温度降低。当气体节流后,由于压力降低,气体体积膨胀,分子间的距离增大,分子间的位能增加,相应的动能减小,而分子的动能大小可反映出温度的高低,所以,一般情况下,气体节流后温度总是有所降低。并不是所有流体节流膨胀后会降温的。比如氢气会升温。用气态方程解释节流过程是不合适的,因为气态方程的表达中,没有考虑能量的变化,而温度的升高与降低,是与物质的能量相关的。对于大部分气体,由于节流过程是一个减压膨胀过程,这时气体通过膨胀对外作功,体系内能降低,温度也就下降了。对于分子量非常小的气体,则不适用此解释。对于气体来说:节流的温度升高还是降低,跟焦耳汤姆逊系数有关,跟目前的状态有关(P,V);即气体节流温度降低和升高要看节流前气体状态。如氢气和氦气,节流后温度增加的。所以氢气的泄露危险性比较高的原因也是因为这样。因为氢气节流温度升高产生火焰或者爆炸。气体流过节流阀前后,气体的压力、温度、流速、密度是怎样变化的。众所周知,节流后流体压力必定降低,但温度、流速以及密度估计很少有人关心,首先说温度,根据热力学原理,压缩放热,膨胀吸热,也就是流体压力增高其本身的温度也要升高,要向外释放热量,压力降低,本身温度降低,要吸收外界热量,对于气体尤为明显,因此节流后,气体的温度会降低,对于常温下的气体,经过较大程度的节流后,压降大则温度降低的多,现场常会发现节流后的气体管线有结霜现象,就是这个道理。再说流速的变化情况,对于液体,因可以忽略其压力变化对体积造成的影响,流量一定的情况下,流速是与管径,也就是流道面积决定的,如果节流阀前后管径相同,则流体流速应该不变,对于气体则不然,由于气体的压力变小、体积必然增大也就是在此压力下的相对流量要增大(实际流量肯定是不变的),因此其节流后的流速增大,在节流后压力下的体积增大,密度必然减小,这就是气体流经节流阀前后参数的变化,即:压力降低、温度降低、流速增大、密度减小。

好了,文章到此结束,希望可以帮助到大家。

猜你喜欢